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Abstract.  
 
The adaptability of the convolutional neural network (CNN) technique is probed for aerodynamic meta-
modeling task. The primary objective is to develop a suitable architecture for variable flow conditions and 
object geometry, in addition to identifying a sufficient data preparation process. Multiple CNN structures 
were trained to learn the lift coefficients of the airfoils with a variety of shapes in multiple flow Mach numbers, 
Reynolds numbers, and diverse angles of attack. This was conducted to illustrate the concept of the 
methodology. Multi-layered perceptron (MLP) solutions were also obtained and compared with the CNN 
results. The newly proposed meta-modeling concept has been found to be comparable with the MLP in 
learning capability; and more importantly, our CNN model exhibits a competitive prediction accuracy with 
minimal constraints in geometric representation. 
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1. Introduction 
 

An airfoil produces a lift when fluid flows over it. The source of this lift can be Bernoulli’s principle or Newtons 

third law of motion or both the effects. Some of the researchers proved that the Bernoulli’s principle is wrong in these 

conditions because of the equal time argument.   

Particles on the upper surface should travel a greater distance from the lower surface since both particles should 

reach the tailing edge at the same time the upper particle should have more velocity than the lower surface particles this 

means that according to Bernoulli’s  principle There is more pressure at the bottom and less pressure at the top 

surface .the difference in the pressure generates lift .This argument specifically is known as the equal time argument .the 

equal time argument is a good way to explain lift but it is completely wrong. The first mistake pretrains to how two 

particles start from the same location and reach the tailing edge at same time covering different length of surfaces. The 

Bernoulli’s equation cannot be applied in the two different streamlines. So, equal time argument theory fails to explain 

the lift force generated in the aircraft. 

The particles approach the air foil and takes a curve as shown in the figure. By examining the curve more closely 

there should be more pressure at the top of the particle than the bottom this will supply the centrifugal force the higher 

pressure pushes the particles downwards and the flow is always attached to the airfoil this effect is known as the ‘Coanda 

effect’. The flow gets curved at the bottom of the airfoil as well. A curved bottom surface will make the bottom flow 

also curved to the greater extent. This flow causes the lift force. At the top the pressure will decrease towards the airfoil 

and on the other hand the pressure increases towards the airfoil from the bottom. This difference in pressure generates 

the lift. This if the fluid mechanics-based explanation. 

Coming to the newtons third law of motion. The deflection in the flow of air in the airfoil it pushes the flow 

downward so according to newtons third law the air also should push in the opposite direction so the rection force is 

known as lift force. 

 

Figure 1: Airflow on Airfoil 

 
Figure 2: Forces acting on the Airfoil 
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2. PREDICTION OF COEFFICIENTS USING CONVOLUTIONAL NEURAL NETWORKS: 
 
The dataset is taken with different blade angles and blade shapes. These shapes are designed using the Bezier curves 

in Ansys. By joining different points, the shape generated is different and these shapes are of different airfoils, and they 

are used in prediction at low Reynolds number conditions. 

 
Data Pre-processing: 
 

Images are splitted into training and testing data. The labels of the images are Lift and Drag coefficients. This dataset 

is preprocessed by splitting and resizing the images into homogeneous manner. 

    
  

   
 

Figure 3: Images of different shapes of Airfoil 

 

Building a Neural network model: 
 

Here a pretrained model from the ImageNet challenge is taken for the convolutional model. This was trained on 

heavy TPUs, and it performs well with the production of high accuracy. Basically, the VGG Net contains of 13 

convolutional 2D layers for the hidden layers. The pooling operation is done after the convolutional operations after 

reducing the pixels the image pixels are flattened and the flattened numbers are sent into a fully connected neural 

networks and the connected layers are having the activation functions as ReLu and the 3 fully connected neural networks 

are placed successively. The output layer has the activation function of sigmoid. The Lift and Drag coefficients can be 

predicted by testing the model by using test images. 

 
 
 
Training the Neural Network: 
 

The training dataset is taken with the batch size of 256 and the training loop is run with 500 epochs. The back 

propagation is done 500 times and loss function is cross entropy loss and the optimisation function is taken as Adam 

with a learning rate of 0.0001. The weights and bias are set automatically after every epoch. The final epoch weights and 

bias are saved in .h5 file and these weights can be used for testing the model.  
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3. RESULTS AND DISCUSSIONS: 
 
The model that was build can be used for testing because the accuracy obtained is 92.5%. After training process, 

the model is tested by passing the test images into the model and by checking the result with the predicted one. While 

training the model the loss and accuracy graphs are obtained for test and train parts. If the loss is decreasing gradually 

the model can be used for predicting the drag and lift forces in the airfoil. 

 

Figure 3:Training and testing loss 
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