
 

 Journal of Airline Operations and Aviation Management 

 

Article 

 

Evaluating the Impact of Airport Design and 
Operations on the Efficiency of Part 139 Certificated 
Airports in the South and Southeast United States 
 
Shaun Kelly1,2, Vivek Sharma3*, Gia Kashyap4 

 
1Ph.D Candidate, College of Aeronautics, Florida Institute of Technology, United States 
2Assistant Lecturer, Aviation Management, Southern Illinois University, United States  

Email: skelly2023@my.fit.edu, Orcid id: https://orcid.org/0009-0001-6060-3597  
 

3Assistant Professor, College of Aeronautics, Florida Institute of Technology, United States  

Email: vsharma@fit.edu, Orcid id: https://orcid.org/0000-0002-8758-8606 
 

4The Paideia School, Atlanta, United States  

Email: gia.t.kashyap@gmail.com, Orcid id: https://orcid.org/0009-0005-0259-7925 
 

DOI: https://doi.org/10.64799/jaoam.V3.I2.5 
 
 
Abstract.  
 
Several studies in the past have explored the relationship between various airport related variables and 
operations (Javanmard et al., 2024; Khireldin & Law, Li & Trani, 2017; Mott et al., 2016). This study delves 
into the impacts of airport design, runway characteristics, services, classifications, and comprehensive data 
sets on the operational volume of Part 139 certificated airports in the United States. Employing a hierarchical 
multivariate regression model, the research addresses the influence of various airport-related factors on 
operational volumes. Initial findings indicated significant associations between several key variables such as 
and operational volume, with runway length and the scale of air carrier and general aviation operations being 
particularly influential. The research also critically evaluated and refined the selection of variables based on 
statistical significance and multicollinearity, leading to a focused analysis on the most impactful factors. 
Despite initial assumptions that all proposed variables would be significant, the study refined these inputs to 
better align with observed data, enhancing the model's predictive accuracy and reliability. This paper provides 
valuable insights into airport operational dynamics, supporting future policy decisions and strategic planning 
in airport management. 
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1. Introduction 

 

Integrating intelligent technologies and utilizing comprehensive data from multiple sources is crucial for effective 

airport management and strategic decision-making [1]. While aviation often brings to mind the image of an airplane, the 

airport is the core of aviation operations—a critical hub that coordinates various aspects of commercial and general 

aviation (GA) activities. Airports are the epicenter of aviation, providing essential points of departure and arrival for all 

aircraft. The operation of an airport is complex, reflecting the intricate nature of the aviation industry. Each facility 

uniquely contributes to the seamless execution of flight operations, and understanding these complexities is vital to 

comprehending the broader dynamics of the aviation sector. 

 

Airports are intricate systems where design and capacity intersect with regional demographics and economic trends. 

The infrastructure of an airport—particularly the number and configuration of runways—plays a foundational role in 

managing air traffic and maximizing operational efficiency. At their most straightforward classification, runway 

configurations (e.g., single runway, parallel runways, or intersecting runways) significantly affect an airport’s operational 

capacity as they determine how many aircraft can take off or land within a given period. Specific runway characteristics, 

such as length and uniformity of declared distances, further influence the variety of aircraft an airport can accommodate, 

which in turn directly impacts its operational volume. For instance, longer runways can support larger aircraft, enabling 

higher capacity operations, while more complex runway configurations can facilitate more efficient aircraft movement, 

reducing delays and enhancing overall throughput. 

 

Beyond infrastructure, services provided by airports are essential to day-to-day operations. These include air traffic 

control, marked by towers' presence and operational hours, and fixed-base operators (FBOs) availability. These services 

ensure operational efficiency and safety, allowing the airport to support various aviation-related activities. Regulatory 

classifications, such as those from the National Plan of Integrated Airport Systems (NPIAS), Part 139 Certification, and 

the Aircraft Rescue and Firefighting (ARFF) index, further define an airport’s scope of operations. These classifications 

reflect the regulatory and operational capacities that each airport is expected to handle. 

 

This study uses a hierarchical multivariate regression model to examine the relationship between airport design, 

runway characteristics, and operational volume at Part 139 certificated airports. However, future research should explore 

additional methods to offer deeper insights into airport operations’ temporal and spatial complexities. Time-series 

analysis, for example, could identify patterns in operational volumes over time, which would be valuable for 

understanding seasonal demand fluctuations or long-term changes. This approach would enable researchers to track 

how operational volumes evolve over different periods, which is critical for strategic airport capacity management. 

 

Additionally, spatial models could account for geographic dependencies between airports, as airports within the 

same region may share similar operational patterns influenced by factors like regional economic conditions, weather, or 

proximity to transportation hubs. By incorporating spatial analysis, future studies could identify clusters of airports that 

exhibit comparable operational characteristics, providing deeper insights into how regional dynamics affect airport 

efficiency. 
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Finally, future research should consider using the Durbin-Watson test to detect autocorrelation in the residuals of 

the regression model. This test would ensure that the data's independence assumptions are met, improving the accuracy 

of predictive models. By combining time-series analysis, spatial models, and tests for autocorrelation, future studies 

could provide a more holistic view of the factors influencing airport operational volume across both temporal and 

geographic dimensions. 

 

1.1 Purpose Statement  

Several studies in the past have explored the relationship between various airport-related variables and operations 

[2-4]. However, a limited amount of research focused on understanding the Part 139 airports in the U.S. Therefore, the 

primary purpose of the current study was to investigate the relationship between airport design, runway characteristics, 

airport services, airport classifications, airport operations, and operational volume of Part 139 certificated airports. 

 

1.2 Research Question 

The primary research question for the current study is as follows:  

 

What is the relationship between variables related to airport design, runway characteristics, airport services, airport 

classifications, airport operations and operational volume of Part 139 certificated airports? 

 

1.3 Research Hypothesis:  

The primary statistical hypothesis for the current studies are as follows:  

 

• H1SetA. There will be a significant relationship between airport design and operational volume with respect to 

Part 139 certified airports. 

• H1SetB. There will be a significant relationship between runway characteristics and operational volume with respect 

to Part 139 certified airports.  

• H1SetC. There will be a significant relationship between airports services and operational volume with respect to 

Part 139 certified airports. 

• H1SetD. There will be a significant relationship between airport classifications and operational volume with respect 

to Part 139 certified airports. 

• H1SetE. There will be a significant relationship between airports operations and operational volume with respect 

to Part 139 certified airports. 

 

2. Literature Review 

 

2.1 Airport Operations in Research 

In airport management, data is not just a tool but the cornerstone of effective decision-making. The ability to 

harness and interpret data—from airport design to daily operations—offers a narrative that reveals past performance, 

uncovers current trends, and, crucially, forecasts future developments. This dynamic and ever-evolving industry depends 

on precise data insights to navigate its complexities and anticipate its needs. As we delve into the intricacies of airport 
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operations data analysis and modeling, it becomes evident how indispensable data is to the present and future of airport 

management. Airport operations encompass various activities, each requiring precise coordination and management. 

Effective airport management relies on understanding these operations thoroughly. Research in this area has utilized 

various models and methodologies to optimize different aspects of airport operations. Discrete event simulation models 

play a significant role in optimizing runway operations. These models help manage runway operations efficiently by 

simulating scenarios and predicting potential bottlenecks. A detailed case study on Cairo International Airport illustrates 

the benefits of these models in managing runway operations. This research highlights how simulation can improve 

operational efficiency and reduce delays by accurately modeling the complexities of runway use and aircraft movements 

[3]. 

 

Statistical approaches are also crucial in understanding and managing airport operations. The least-square model, 

for instance, is employed to estimate historical percentages of itinerant general aviation operations by aircraft types and 

flight rules [3]. This methodology provides valuable insights into airport operations, allowing for more informed 

decision-making. By analyzing past data, airport managers can better predict future trends and adjust their strategies 

accordingly [5]. Furthermore, automated data collection methods, such as crowd-sourced ADS-B data, offer innovative 

solutions for accurately counting airport operational data. This approach reduces reliance on traditional methods and 

improves data accuracy, facilitating better operational planning. The use of ADS-B data allows for real-time monitoring 

and analysis, providing a comprehensive overview of airport activities and helping to identify areas for improvement [6]. 

 

2.2 Managing Through Data Analysis and Forecasting 

Building on an understanding of airport operations research, effective management hinges on robust data analysis 

and forecasting techniques. By leveraging advanced data analysis techniques, airports can enhance operational efficiency 

and improve customer experience. Data analytics is increasingly used to enhance operational efficiency and the customer 

experience in airport operations. The integration of big data analytics is highlighted in a comprehensive review, 

emphasizing their impact on intelligent airport management and their development [1]. Nontraditional statistical 

methodologies provide alternative methods for estimating aircraft operations. These approaches are compared to 

traditional methods, showcasing their effectiveness in different scenarios. For instance, nontraditional statistical 

approaches are more effective in specific contexts than traditional methods [4]. Simulation and modeling techniques, 

such as discrete event simulation, are essential for understanding various aspects of an airport’s operations, such as 

operational flow, capacity constraints, and planning and development. Statistical forecasting models, including Seasonal 

Autoregressive Integrated Moving Average and Exponential Smoothing models, are evaluated for accuracy and 

applicability in predicting airport operation indicators. These models provide valuable insights for short-term and long-

term planning in airport management [7]. 

 

2.3 Predicting the Future Through Data 

As data analysis and forecasting become more sophisticated, predictive analytics allows airport managers to 

anticipate future trends and make proactive decisions. By leveraging advanced forecasting models, airports can better 

prepare for future challenges and opportunities. 
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Hybrid prediction models, which integrate machine learning techniques, are explored for their effectiveness in 

forecasting air transportation demand. These models provide a comprehensive framework for predicting future 

demands and their impacts on energy consumption and emissions [2]. The performance comparison between SARIMA 

and ETS models is crucial for understanding their respective advantages in forecasting airport operations. Detailed 

analysis reveals the strengths and limitations of each model [7]. Pairwise, machine learning algorithms offer a robust 

approach for enhancing prediction accuracy in air transportation demand. The hybrid approach is discussed, providing 

insights into its application and benefits by optimizing the reduction in mistakes [2]. 

 

Case studies and practical applications provide concrete examples of these methodologies in action. For instance, 

the discrete event simulation for runway operations at Cairo International Airport is a prime example of optimizing 

airport efficiency. The case study results and implications are thoroughly examined [3]. Forecasting models are also 

evaluated for their effectiveness in predicting operational indicators at Polish airports. The study comprehensively 

reviews different models and their applications [7]. Furthermore, demand forecasting for Canadian air transportation is 

explored, focusing on its implications for energy consumption and emissions. The findings highlight the importance of 

accurate forecasting in sustainable aviation practices [2]. 

 

2.4 Future of Airport Management Decision-Making 

This literature review underscores the pivotal role of operational data in airport management, from understanding 

complex operations to forecasting future trends. Integrating discrete event simulation models, advanced statistical 

methodologies, and innovative data collection techniques has proven instrumental in enhancing operational efficiency 

and decision-making capabilities. Big data analytics and machine learning algorithms extend these capabilities, enabling 

airports to react to current trends and proactively anticipate and prepare for future challenges. The findings from case 

studies, such as those conducted at Cairo International Airport and various Polish airports, illustrate these advanced 

data techniques' practical applications and significant benefits. These studies highlight the importance of accurate data 

collection and sophisticated analysis in optimizing airport operations and improving overall efficiency. However, the 

review also identifies gaps and limitations that warrant further research. More comprehensive models are needed to 

integrate various data sources and forecasting techniques. Future research could also focus on developing sustainable 

practices that can effectively implement in airport management. This includes exploring the environmental impacts of 

airport operations and identifying strategies to mitigate these effects through improved forecasting and operational 

adjustments. 

 

This literature review reveals operational data's indispensable role in shaping airport management's future. Through 

the lens of various advanced methodologies, we see how data reflects past performance and provides actionable insights 

for current and future operations. Despite the significant advancements, gaps and opportunities remain for further 

research, particularly in developing more comprehensive models and sustainable practices. As the industry evolves, 

embracing the intricacies of airport operations, data analysis, and modeling will be critical for the present and future of 

airport management decision-making. 
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3. Methodology 

 

3.1 Research Design  

The current study has multiple independent variables (IVs) divided into five functional sets and a single dependent 

variable (DV), as listed in Table 1. The dependent variable, the operational volume, is the total annual aircraft 

movements gathered from the respective airports and submitted to the FAA. Therefore, the current study employed an 

exploratory correlation research design. The current design is appropriate as the objective was to determine the 

relationship between multiple measures and a single group.  

 

Table 1. Functional Sets and Independent Variables in the Current Study 

Sets/Independent Variables   Operational Definitions 

Set A = Airport Design  

X1 = Number of Runways X1 is a continuous variable, number of runways at each airport.  

X2 = Runway Configuration  X2 is a categorical variable Single Runway, Parallel Runways, 

Open/Close V Runways, Intersecting Near Mid-Point Runways, 

and Other. 

Set B = Runway Characteristics  

X3 = Length of Longest Runway. X3 is a continuous variable, runway's total length.  

X4 = Same Declared Distances.  X4 is a categorical variable, declared distances same as the length 

of the longest runway (Yes or No).  

Set C = Services   

X5 = Tower X5 is a categorical variable, if the airport has a manned tower. The 

categories are Yes and No. 

X6 = Tower Hours  X6 is a categorical variable denotes a tower’s hours of operation: 

24/7 Operations, Partial Operations, and No Tower.  

X7 = Number of FBOs X7 is a continuous variable, number of fixed-base operators 

(FBOs) operate at each airport. 

Set D = Airport Classifications  

X8 = NPIAS Classification X8 is a categorical variable, Federal Aviation Administration 

(FAA) categories are Small hub, Non hub, National, and Regional. 

X9 = Part 139 Classification  X9 is a categorical variable is based on an airport’s Part 139 

certification type. These categories are Class I, Class II, Class III, 

and Class IV. 

X10 = ARFF Index X10 is a categorical variable is based on an airport’s aircraft rescue 

firefighting (ARFF) index. These categories are Index A, Index B, 

Index C, Index D, and Index E). 

Set E = Airport Operational Data   

X11 = Air Carrier Operations  X11 is a continuous variable, is the total annual air carrier 

operations.  

X12 = GA Operations  X12 is a continuous variable, is the total annual GA operations.  

X13 = Based Aircrafts  X13 is a continuous variable, is the total number of based aircrafts.  

Dependent Variables   

Y = Operational Volume  Y is a continuous variable, total number of aircraft movements.  

 

3.2 Population and Sample  

3.2.1 Population 

This current study focused on Part 139 certificated airports within the United States, which meet specific regulatory 

standards for operational and safety criteria. These airports constitute the population of interest due to their standardized 

operational frameworks and comprehensive data reporting to regulatory bodies like the FAA. 

 

3.2.2 Sample  

The sample is drawn from this population and includes airports with similar operational capacities, characterized by 

metrics such as air traffic volume, types of aircraft, passenger numbers, and service offerings. The sample was limited 
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to Small Hub, Nonhub, National, and Regional airports. The selection criteria, informed by professional experience, 

ensure the inclusion of airports with comparable levels of activity and service provision.  

 

Initially, the sample was geographically limited to the southern United States, including states like Alabama, Arkansas, 

Florida, Georgia, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, and Texas. To enhance 

the study's scope, the sample was expanded to encompass a more diverse range of states, including Arizona, Delaware, 

Maryland, New Mexico, and Virginia. This expansion enables a comprehensive examination of airports across varied 

economic and demographic contexts while maintaining a common thread of operational characteristics. By selecting a 

representative sample, this research aims to deliver an in-depth analysis of operational performance and service 

efficiency across a diverse and comprehensive subset of U.S. airports. 

 

3.2.3 Sample Size Planning 

Table 2 outlines the results of an a priori power analysis conducted to determine the necessary sample size for our 

study to ensure an adequate power level to detect a medium effect size. According to Faul et al. [8], for a desired effect 

size (ES) of 0.15 and an alpha level (α) of 0.05, a minimum sample size of 150 is required to achieve a power of 

approximately 0.80 for the overall model R2. This provides an 80% chance of correctly rejecting the null hypothesis for 

the combined effect of all independent variables on the dependent variable. For individual sets of variables labeled sRA2 

through sRE2, the estimated sample sizes range from 69 to 78 to achieve a similar power level. 

 

Table 2. A priori Power Analysis 

Parameter Being 

Tested 

α ES Estimated 

Same Size (N) 

Power Based on 

Estimated N 

R2 0.05 0.15 150 0.803 

sRA
2 0.05 0.15 69 0.805 

sRB
2 0.05 0.15 69 0.805 

sRC
2 0.05 0.15 78 0.802 

sRD
2 0.05 0.15 78 0.802 

sRE
2 0.05 0.15 78 0.802 

 

3.3 Data Collection and Analysis  

The current study's data was from established archival databases. The dependent variable, the operational volume, 

is the total annual aircraft movements gathered from the respective airports and submitted to the FAA. The independent 

variables were meticulously sourced from authoritative aviation databases, such as the Federal Aviation Administration 

(FAA), which provide extensive data pertinent to airport operations. 

The current study used hierarchical multivariate regression analysis to examine Operational Volume factors at Part 

139 certificated airports. The sets were entered in the following order for the hierarchical analysis: Set A – Set B – Set 

C – Set D – Set E. This model aligns with industry practices by introducing variables in stages, mirroring the complexity 

of airport operations. Upon collection, the data were imported into the statistical software JMP® [9], facilitating 

descriptive and inferential analyses. This robust platform allows for comprehensive statistical evaluation, including 

correlation analysis and hierarchical multiple regression, to predict how different variables impact airport operational 

volume. 
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The use of dummy variables in this study enables the inclusion of categorical data, such as airport classification and 

runway configuration, in a linear regression model. Since categorical variables lack a numerical relationship between 

their categories, converting them into dummy variables allows the model to treat each category as a distinct factor. For 

instance, the difference between a small hub and a non-hub airport cannot be quantified numerically, but both may have 

distinct impacts on operational volume. Assigning a value of 0 or 1 to each category ensures that the model can estimate 

the unique effect of these classifications while keeping other variables constant. 

 

This method is essential for isolating the specific influence of each category. For example, a non-hub airport's 

impact on operational volume can be compared directly to a small hub, allowing for a more unambiguous interpretation 

of how different airport classifications or runway configurations affect outcomes. By employing dummy variables, the 

model captures the independent effects of these categories on the dependent variable—operational volume. 

 

This study operationalized NPIAS classification using a reference category (small hub) with other classifications 

coded into distinct dummy variables. This approach ensured that the regression model could accurately assess non-

numerical variables. Additionally, multicollinearity diagnostics, particularly the Variance Inflation Factor (VIF), were 

used to check for potential overlap between predictor variables. All VIF values were within acceptable ranges, 

confirming that multicollinearity was not a concern and affirming the robustness of the model. 

 

4. Results 

 

4.1 Preliminary Analysis  

This study did not perform cross-validation or holdout sample validation, representing a limitation. These 

techniques are commonly employed in predictive modeling to evaluate how well a model performs on unseen data. 

Cross-validation involves dividing the dataset into multiple parts and training the model on some sections while testing 

it on others to ensure it generalizes effectively to new data. In contrast, holdout sample validation sets aside a portion 

of the data exclusively for testing the final model, indicating how the model would perform in real-world applications. 

Implementing either of these techniques in future research would significantly enhance the robustness and reliability of 

the model's predictive accuracy. 

 

Similarly, this study did not conduct a sensitivity analysis, though it is recommended for future research. Sensitivity 

analysis involves re-running the regression model after removing potential outliers to assess how these extreme data 

points influence the results. This process helps determine whether the findings are stable or if they are being unduly 

affected by unusual values. Given that this study identified outliers using jackknife distances, conducting a sensitivity 

analysis that compares results with and without these outliers would increase the credibility of the conclusions. 

 

Interaction terms were also not included in this analysis, but they should be explored in future research to identify 

more complex relationships between key variables. For example, it is plausible that the effect of runway length on 

operational volume may differ based on airport classification. A small hub airport might experience a greater increase 
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in operational volume from a runway extension than a non-hub airport. Testing for these interaction effects in future 

models could provide a deeper understanding of the intricate dynamics between different operational factors. 

 

4.1.1 Data Set Modification 

For the data analysis in this study, the categorical variables were systematically coded using dummy variables to 

facilitate quantitative assessment, as detailed in the provided tables. The NPIAS Classification (X1) used Small Hub as 

a reference group, with National, Nonhub, and Regional classifications assigned codes as per Table 3.  

 

Table 3. Small Hub as the Reference Group 

 Coded Variables 

X8: NPIAS Classification C1 C2 C3 

National 1 0 0 

Nonhub 0 1 0 

Regional 0 0 1 

Small Hub 0 0 0 

 

Tower Hours (X5) were simplified using Partial Operations as the reference, and alternative operational hours were 

coded as indicated in Table 4. Runway Configuration (X1) followed the pattern, with Single Runway as the baseline and 

other configurations coded according to Table 5.  

 

Table 4. Partial Operations as the Reference Group 

 Coded Variables 

X5: Tower Hours C1 C2 C3 

24/7 Operations 1 0 0 

No Tower 0 1 0 

Partial Operations 0 0 0 

 

Table 5. Single Runway as the Reference Group 

 Coded Variables 

X1: Runway Configuration C1 C2 C3 C4 

Intersection Near Mid-Point Runways 1 0 0 0 

Open/Close V Runways 0 1 0 0 

Other 0 0 1 0 

Parallel Runways 0 0 0 1 

Single Runway 0 0 0 0 

 

4.1.2 Missing Data Analysis 

The dataset underwent a thorough examination for missing data, which revealed that all variables were complete 

with no omissions. This comprehensive data availability has allowed retaining all variables in their original form, ensuring 

a robust and uninterrupted analysis process. 

 

4.1.3 Outlier Analysis 

The outlier analysis using jackknife distances identified 20 cases that exceeded the upper control limit (UCL) of 6.90 

within the dataset. These cases underwent a thorough review, confirming that they were not errors or miscoding’s but 

accurate reflections of rare events in the operational volume of the airports studied. Since these outliers represented 

legitimate data from reliable sources, the decision was made to retain them in the analysis. Excluding these valid cases 
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could have skewed the results by omitting significant variations in airport operations, as the dataset aims to reflect the 

full spectrum of airport activities. Therefore, retaining these outliers was crucial in accurately representing rare but valid 

operational scenarios. 

 

4.1.4 Multicollinearity 

Upon reviewing the Variance Inflation Factor (VIF) in Figure 0, a few variables show signs of multicollinearity and 

exceed the VIF threshold of 10. X1: Runway Configuration C3 (Other) registers a VIF of 11.989, slightly above the 

usual cutoff [9]. Despite this, based on the minor increment, it has been decided to retain this variable in the dataset for 

its potential unique contribution to the model. For the other variable sets, most show acceptable VIF levels and will be 

kept. However, for Set C, there is an overlap between X4: Tower and X5: Tower Hours C2 (No Tower), indicating 

redundancy; hence, X4: Tower will be excluded as its data is captured within X5: Tower Hours [9]. 

 

Regarding Set D, although X3: ARFF Index C1, X3: ARFF Index C2, and X3: ARFF Index C3 display high VIFs, 

and X3: ARFF Index C4 does not, the entire variable group will be removed [9]. This is informed by the industry 

observation of a consistent relationship between the size of airports in X1: NPIAS Classifications and their 

corresponding ARFF Index, where smaller airports like Regional often have an Index A and larger ones like Small Hub 

have higher indices such as Index C. This observed trend and regulatory requirements that tie ARFF levels to airport 

classifications support this decision. The VIFs for the remaining variable sets are within acceptable limits, so no further 

exclusions are necessary from these sets. 

 

 

Figure 1. Multicollinearity Using VIF Demonstration 
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4.1.5 Regression Assumptions 

Before conducting the hierarchical multivariate regression analysis to assess operational volume at Part 139 

certificated airports, validating the underlying regression assumptions was essential. Linearity was confirmed, and 

variables with p-values above 0.2 were excluded. Key assumptions such as measurement error, homoscedasticity, and 

independence of residuals were also satisfied. A QQ plot and Shapiro-Wilk test (p < 0.0001*) indicated non-normality, 

but the model remained robust due to the large sample size (N = 153). Although log transformation was considered, it 

was deemed unnecessary given the model's overall reliability. 

 

 

Figure 2. Q-Q Plot for Normality Assumption 

 

4.2 Primary Analysis  

4.2.1 Descriptive Statistics 

The descriptive statistics for the 153 Part 139 certificated airports present a diverse operational landscape, as 

reported in Table 6. Operational Volume (Y) has a mean (M) of 66,773.118, showcasing a wide operational range 

indicative of varied airport activities. Service availability, represented by the average Number of FBOs (X7) of 1.340 and 

the Number of Runways (X1) with a mean of 2.039, suggests standard service provision across the airports with slight 

variation in airfield capacity. Infrastructure-wise, the Length of Longest Runway (X3) averages 8,110.556 feet, pointing 

to diverse capacities catering to various aircraft sizes. Operational metrics, like Air Carrier Operations (X11) and GA 

Operations (X12), have high means but even higher variations, reflecting the different scales of commercial and general 

aviation activity. The Based Aircraft (X13) average indicates that some airports are significant hubs.  

 

Table 6. Summary of Continuous Factors 

Factors M SD Range 

Y: Operational Volume 66,773 56,056 5,888-382,739 

X6: Number of FBOs 1.340 0.609 0-4 

X7: Number of Runways 2.039 0.818 1-6 

X9: Length of Longest Runway 8,110 1,842 4,803-13,502 

X11: Air Carrier Operations 8,015 15,7081 0-148,086 

X12: GA Operations 39,943 40,360 0-257,721 

X13: Based Aircraft 103 81.59 0-416 

Note. N = 153 
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4.2.2 Inferential Statistics  

The detailed results analysis of the hierarchical multivariate regression model, presented in Table 7, provides a 

granular examination of how various independent variables influence the operational volume at Part 139 certificated 

airports. The analysis is structured across five sets, each focusing on different airport operations and features. When Set 

A = Airport Design comes into the model with one variable X1 = Runway Configuration, R2 = .0162, F (1,151) = 

2.4970, p = .1162, the overall model was not significant at this stage. Set A focused on Runway Configuration, examining 

one specific type of Intersection Near Mid-Point Runways with single runways. As the omnibus was not significant, 

further exploration of the regression coefficient was not deemed necessary. When Set B = Runway Characteristics 

variables come into the model in the presence of Set A = Airport Design, the overall model was R2 = .158, F (2,150) = 

14.11, p < .0001. Set A and Set B collectively account for 15.8% variance in operational volume. In addition to that, Set 

B = runway Characteristics uniquely accounted for 14.2% of the variance in the operational volume; this increment was 

significant at a p < .0001. Set B focused on the Length of Longest Runway, B3 = 11.82, for every one-unit increase in 

runway length on average, operational volume increased by 11.816 units (p < 0.001), reflecting the critical role of runway 

length in accommodating larger aircraft and more frequent operations. 

 

Table 7. Hierarchical Regression Analysis with a Set Entry Order A-B-C-D-E 

Variables B 95% CI SE β R2 Δ R2 

  LL UL     

Set A      0.016 0.016 

Constant 71,084*** 60,670 81,499 5,270 0.00   

X1 = Runway 

        Configuration C1 

-16,089 -36,207 4,028 10,1852 -0.13   

Set B      0.158* 0.142*** 

Constant -27,894 -67,937 12,148 20,265 0.000   

X1 = Runway 

        Configuration C1 

-4,353 -23,584 14,877 9,732 -0.04   

X3 = Length of 

        Longest Runway 

11.82*** 7.18 16.46 2.36 0.39   

Set C      0.178 0.020*** 

Constant -22,266 -62,406 17,874 20,313 0.000   

X1 = Runway 

        Configuration C1 

-3,332 -22,432 16,766 9,665 -0.03   

X3 = Length of 

        Longest Runway 

10.58*** 5.78 15.357 2.42 0.35   

X6 = Tower Hours C1 20,418 -932 41,768 10,804 0.15   

Set D      0.186 0.008 

Constant -16,511 -57,752 24,729 20,869 0.00   

X1 = Runway 

        Configuration C1 

2,249 -21,411 16,913 9,697 -0.02   

X3 = Length of 

        Longest Runway 

10.47*** 5.692 15.245 2.417 0.34   

X6 = Tower Hours C1 18,698 -2,820 40,218 10,889 0.14   

X8 = NPIAS Classification C2 -9,945 -26,660 6,769 8,458 -0.09   

Set E      0.851* 0.665 

Constant -37,955*** -56,279 -19,631 9,271 0.00   

X1 = Runway 

        Configuration C1 

-4,678 -12,949 3,592 4,185 -0.04   

X3 = Length of 

        Longest Runway 

5.88*** 3.67 8.09 1.12 0.19   

X6 = Tower Hours C1 3,858 -5,996 13,714 4,986 0.03   

X8 = NPIAS 

        Classification C2 

9,169* 1,613 16,726 3,823 0.09   

X11 = Air Carrier 

        Operations 

0.96*** 0.68 1.23 0.14 0.27   

X12 = GA Operations 1.14*** 1.05 1.23 0.05 0.82   

Note. N = 153. * p < 0.05. *** p < 0.001.  
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While some variables, such as tower hours and airport classification, showed lower statistical significance, their 

retention in the model was purposeful to provide a comprehensive understanding of airport operations. Though not 

individually significant, these variables may exert influence when combined with other factors. For example, tower hours, 

despite showing low direct impact, may play a more nuanced role when examined in interaction with runway 

configurations or airport classifications. Retaining these variables ensures the model captures the broader operational 

environment, offering a holistic analysis of airport efficiency. 

 

When Set C = Services comes into the model in the presence of Set A = Airport Design and Set B = Runway 

Characteristic variables, the overall model was R2 = .178, F (3,149) = 10.761, p < .0001. Set A, Set B, and Set C 

collectively account for a 17.8% variance in operational volume. In addition to that, Set C = Services uniquely accounted 

for 2% of the variance in the operational volume; this increment was significant at a p < .0001. No additional factors 

were significant at this stage.  

 

When Set D = Airport Classification variables come into the model in the presence of Set A = Airport Design, Set 

B = Runway Characteristics variables, and Set C = Services, the overall model was R2 = .185, F (4,148) = 8.43, p < .0001. 

Set A, Set B, Set C, and Set D collectively account for an 18.5% variance in operational volume. In addition, Set D = 

Airport Classification uniquely accounted for 0.8 % of the variance in the operational volume; this increment was not 

significant at a p < .0001. No additional factors were significant at this stage.  

 

When Set E = Airport Operational Data variables come into the model in the presence of Set A = Airport Design, 

Set B = Runway Characteristics variables, Set C = Services, and Set D = Airport Classification, the overall model was 

R2 = .851, F (6,146) = 138.48, p < .0001. Set A, Set B, Set C, Set D, and Set E collectively account for 85.1% variance 

in operational volume. In addition, Set E = Airport Operational Data uniquely accounted for 66.5 % of the variance in 

the operational volume; this increment was not significant at a p < .0001. B8 = 9169; on average, non-hub airports had 

9169 more operational volume than small airports (p = .017). B11 = .96, for every one-unit increase in air carrier 

operations on average, operational volume increased by 1 unit (p < 0.001). B12 = 1.14, for every one-unit increase in 

GA operations on average, operational volume increased by 1 unit (p < 0.001).  

 

The comprehensive analysis across these sets highlights the specific contributions of each variable to the operational 

dynamics of airports and validates the robustness of the hierarchical regression model. The incremental R2 values for 

each set demonstrate these variables' varying degrees of impact, with Set E showing the most substantial influence. This 

detailed examination allows for targeted insights into the factors most significantly affect airport operations, providing 

a valuable framework for policy-making and strategic planning in airport management. 

 

4.2.3 Research Model Equation 

In this research on the impact of various factors on the operational volume at Part 139 certificated airports, it is 

crucial to present both a comprehensive and a reduced model to address the research question accurately. The full model 

includes all the variables initially considered, represented by the equation Y = -4,678.474X8C1 + 5.878X9 + 
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3,858.896X5C1 + 9,169.945X1C2 + 0.955X11 + 1.138X12 - 37,955.480. This version incorporates all the predictors 

irrespective of their statistical significance, providing a holistic view of the potential influences on operational volume. 

 

5. Discussion  

 

 The conclusion drawn from the hierarchical multivariate regression analysis underscored that operational volume 

at Part 139 certificated airports is intricately associated with specific airport characteristics and operations. Notably, 

runway configurations and the scale of air carrier and general aviation operations are significant predictors of airport 

activity. The pronounced effect size in the model illustrates that a substantial proportion of variability in operational 

volume can be attributed to these identified factors. This robust correlation paves the way for a more granular 

examination of how each variable within sets A through E contributes to the overall operational dynamics. In moving 

forward, the analysis will delve deeper into the individual impact of these variables, seeking to unravel the nuances of 

airport functionality and management. This continued exploration aims to refine the understanding of operational 

volume drivers, thereby informing strategic decisions and policy formulations in the aviation industry. 

 

5.1 Effect Size 

For the RQ, the effect size as a measure of explained variance is η2 = 0.8505. This means that the impacts of airport 

design, runway characteristics, services, airport classifications, and 5010 data explain 85.05% of the variance in the 

operational volume of Part 139 Certificated airports. The effect size as a measure of standard deviation is Cohen’s f 

= 2.3852 (Cohen’s f = √(η2 / (1 – η2)). This means the effect size is more significant than Cohen’s operational 

definition of a large effect (0.40). 

 

5.2 Post-hoc Power Analysis 

The provided post-hoc power analysis detailed in Table 8 evaluates the ability of the study to correctly identify 

significant effects based on the sample size of 153 and varying effect sizes for different regression parameters. With an 

alpha level of 0.05 and an impressively high effect size of 5.711, the overall model power surpasses 0.99 [8]. This indicates 

a near-certain probability of correctly rejecting the null hypothesis, asserting that the model explains approximately 85.2 % 

of the variance in the dependent variable effectively. 

 

Table 8. Post-hoc Power Analysis 

Parameter Being 

Tested 

α ES Size (N) Power Based on 

Estimated N 

R2 = 0.851 0.05 5.711 153 > 0.99 

sRA
2 = 0.016 0.05 0.016 153 0.343 

sRB
2 = 0.158 0.05 0.166 153 0.999 

sRC
2 =0.178 0.05 0.020 153 0.412 

sRD
2 = 0.186 0.05 0.008 153 0.196 

sRE
2 =0.851 0.05 1.985 153 > 0.99 

Note. Reference Data in Appendix G – Post-hoc Data from G*Power 3.1 (Faul et al., 2009) 
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5.3 Plausible Explanations 

The comprehensive analysis of Part 139 certificated airports underscores the influence of airport design, runway 

characteristics, services, classifications, and various data sets on operational volumes. Initially, the outlier analysis 

validated the inclusion of 28 cases that deviated from the UCL due to their reflection of rare operational scenarios, 

affirming their necessity for a robust model (R² = 0.851). This decision validated the alternate hypothesis as operational 

activity at all airports can be normal for one but an outlier to others. 

 

Addressing multicollinearity revealed the complex interdependencies among the variables, especially those related 

to runway configurations and airport classifications. Despite high VIF scores, specific variables like Open/Close V 

Runways were retained for their unique contributions. This decision aligns with the hypothesis that operational volumes 

are influenced by detailed airport characteristics, necessitating a plausible explanation of the impact of each variable 

retained despite high multicollinearity. Critical evaluation led to the exclusion of several variables due to insufficient 

statistical leverage, sharpening the focus on factors demonstrably impacting operational volumes. This step directly 

addresses the research question by confirming the measurable relationships suggested by the alternative hypotheses. 

Explaining why certain variables were excluded based on leverage plots will further clarify their lack of impact. 

 

Finally, the post-hoc power analysis demonstrated substantial statistical power, affirming the study’s capability to 

detect significant effects. This robust validation of the regression model's effectiveness calls for a plausible explanation 

of how the model remains sensitive to the subtleties of operational volume influences across various airport 

configurations. The research supports the alternative hypotheses across multiple dimensions, enhancing the 

understanding of how specific airport characteristics influence operational volumes. Each significant finding prompts 

the need for plausible explanations to elucidate the complex interactions and impacts observed, guiding future policy 

and management strategies in the aviation sector.  

 

6. Conclusion 

 

The findings of this research hold significant implications for airport management and policy formulation, with 

potential positive economic impacts. The results highlight the importance of crucial airport characteristics, such as 

runway length, air carrier operations, and general aviation activities, in driving operational volumes. The strong 

correlation between these variables and airport activity suggests that investments in infrastructure, particularly extending 

runway lengths, can enhance operational efficiency and capacity. 

 

Such improvements are likely to yield broader economic benefits. Increased airport capacity and efficiency can 

attract more airlines and flights, resulting in higher passenger traffic and cargo throughput. This can stimulate local 

economies by creating jobs, boosting tourism, and fostering business investments. For example, regions with well-

developed airports may see growth in the hospitality and retail sectors due to increased passenger flow. Moreover, 

maintaining and expanding airport capacity can promote long-term economic growth and stability. The insights from 

this research provide valuable guidance for strategic planning and resource allocation, ensuring that airports are equipped 
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to meet current and future demands while contributing to regional economic development. Policymakers and airport 

managers can use these findings to make informed, data-driven decisions that support broader economic goals. 

 

Additionally, this study offers a robust framework for understanding the factors influencing operational volumes at 

Part 139 certificated airports. Future research should explore interaction terms—such as between runway characteristics 

and airport classifications—to uncover how these factors jointly impact operational volumes. Interactions between 

services, like tower hours and runway configurations, could further clarify how these variables influence operational 

capacity, providing deeper insights into airport management. 

 

7. Recommendations 

 

Based on the findings of this study, several recommendations can be made to improve airport operational efficiency 

and capacity. First, extending runway lengths where feasible is a critical step, as the analysis shows that runway length 

significantly influences operational volume, especially for airports accommodating larger aircraft. By extending runways, 

airports can increase their capacity to manage air carrier and general aviation operations, improving overall efficiency. 

This is particularly important for smaller and non-hub airports looking to expand their services. 

 

Additionally, investing in infrastructure improvements is essential. Upgrading operational services such as lighting 

systems and air traffic control tower hours and increasing the number of fixed-base operators (FBOs) can further 

enhance efficiency, improve safety, and support higher air traffic volumes. For airports with limited tower hours, 

transitioning to 24/7 operations may significantly reduce delays and streamline operations. 

 

Furthermore, airports and policymakers should conduct detailed economic impact studies to better understand how 

infrastructure improvements can stimulate local and regional economies. Investments in airport facilities improve 

operational efficiency and contribute to economic growth through job creation, tourism, and business development. A 

thorough analysis of these benefits can provide a strong case for further investment in airport infrastructure. 

 

Another key recommendation is adopting advanced predictive modeling tools, such as ARIMA or SARIMA models, 

to forecast future operational volumes. By integrating these models, airports can better anticipate changes in demand 

and allocate resources effectively, ensuring they are prepared for both short-term fluctuations and long-term growth. 

Finally, future research should include field studies, such as direct observations and interviews with airport personnel. 

These qualitative insights would complement the quantitative data, offering a more complete understanding of 

operational challenges and informing strategic decision-making. 

 

8. Limitations and Delimitations 

 

This study acknowledges several limitations and delimitations. One limitation of this study is its reliance on data 

from existing datasets, which may have restricted the depth of analysis. While the data allowed for comprehensive 

statistical modeling, it lacked the depth that field research could provide. Incorporating field research, such as interviews 
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with airport managers or on-site observations, would offer additional context and potentially enhance the findings. Field 

research could also uncover operational nuances not captured in quantitative data, such as staffing patterns, logistical 

challenges, or local economic factors affecting airport operations. 

 

Another limitation is that the research primarily focused on Part 139 Certificated airports, encompassing commercial 

and non-commercial service airports. This scope may limit the generalizability of the findings to exclusively commercial 

airports. Furthermore, the sample initially focused on the southern United States before expanding to other states, and 

while this expanded the diversity of data, regional characteristics such as economic, demographic, and geographic factors 

may still influence the results in ways not fully accounted for. 

 

Additionally, some variables, such as operational data and service classifications, were derived independently, which 

may have introduced inconsistencies in the data. These inconsistencies could affect the reliability of the findings, as 

uniform data collection methods were not used across all variables. Variables that exhibited high multicollinearity or 

insufficient statistical leverage were excluded from the final analysis, which, while necessary to ensure the robustness of 

the model, may have omitted potentially relevant factors. Future studies should explore these excluded variables in 

greater detail to better understand their influence on airport operations. 

 

Lastly, future research should consider the variability in data quality across different sources. Although efforts were 

made to use authoritative aviation databases, inconsistencies in data reporting practices across airports could introduce 

bias. Field research could also serve as a valuable tool in validating or supplementing the existing data, enhancing the 

overall reliability of the findings. 

 

9. Future Research 

 

Future research should address the limitations identified in this study while exploring new avenues to deepen 

understanding. Expanding the sample to include airports from all U.S. states would enhance the generalizability of the 

findings. A more comprehensive national sample would provide a clearer view of airport operations across different 

regions, each with unique operational challenges. 

 

At the same time, narrowing the focus to exclusively commercial service airports, particularly high-traffic hubs, 

could yield targeted insights. These airports are critical to the national transportation network, and understanding their 

operational dynamics is essential for strategic planning and infrastructure optimization. Additionally, future studies 

should explore variables excluded due to multicollinearity or insufficient statistical leverage. Techniques such as Principal 

Component Analysis or Ridge Regression could be employed to reveal the true impact of these factors and refine the 

overall analysis. 

 

A fundamental limitation of this study was the reliance on existing datasets, which may have constrained the depth 

of analysis. While the data enabled robust statistical modeling, it lacked the qualitative insights that field research could 

provide. Future research could incorporate interviews with airport managers or on-site observations to add context and 
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enrich the findings. This approach would uncover operational nuances not captured in quantitative data, such as staffing 

patterns, logistical challenges, or local economic factors affecting airport operations. 

 

Moreover, variability in data quality across different sources remains a concern. Although efforts were made to use 

authoritative aviation databases, inconsistencies in reporting practices may introduce bias. Field research could help 

validate or supplement existing data, enhancing the reliability and accuracy of future findings. 

 

Additionally, future studies should explore interaction terms to capture more complex relationships between 

variables. For example, the effect of runway length on operational volume may vary depending on airport classification, 

with smaller hubs potentially benefiting more from extended runways than non-hub airports. Testing for these 

interactions could uncover subtler dynamics and improve our understanding of how different airport characteristics 

influence operational performance. 

 

To move beyond current operational volumes, future research should integrate time-series models such as 

Autoregressive Integrated Moving Average and Seasonal Autoregressive Integrated Moving Average to forecast trends. 

This approach would allow airports to anticipate future operational volumes under various scenarios, such as increased 

general aviation (GA) operations or infrastructure expansions. Dynamic forecasting could provide valuable insights for 

long-term capacity planning and resource allocation, making the model more applicable to strategic airport management. 

 

While this study did not implement cross-validation or holdout sample validation, future research should consider 

these techniques to enhance predictive reliability. Cross-validation would allow for more robust testing of the model's 

generalizability by splitting the dataset into training and testing sets, thereby reducing concerns about overfitting. 

Similarly, holdout sample validation would offer further insights into how well the model performs on unseen data, 

strengthening its applicability to real-world airport operations. 

 

This study chose hierarchical regression for its ability to introduce variables based on their theoretical relevance 

sequentially. However, future research could benefit from exploring alternative modeling techniques such as stepwise 

regression or penalized regression methods, including the Least Absolute Shrinkage and Selection Operator or Ridge 

Regression. These methods are particularly useful for handling multicollinearity and reducing overfitting in complex 

models. These approaches are particularly useful for handling multicollinearity and reducing overfitting in complex 

models. Comparing hierarchical regression with penalized techniques would offer a more nuanced understanding of 

which variables are significant while improving model parsimony and predictive accuracy. 

 

This study did not address autocorrelation or spatial dependencies between airports, as the focus was on the 

hierarchical multivariate model. Future research should consider conducting tests for autocorrelation, such as the 

Durbin-Watson Test, to ensure that operational volumes are independent over time. Additionally, spatial dependencies 

between airports in the same geographic region could be explored using Spatial Lag Model. Airports nearby may share 

similar operational patterns driven by regional factors, and incorporating these models would provide a more 

comprehensive view of airport dynamics. 
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Finally, recognizing the potential for outliers to skew results, future studies should consider robust regression 

techniques like Huber or Tukey’s Biweight Regression. These methods would offer a more nuanced analysis if traditional 

regression methods fail to account for the impact of outliers. Conducting a sensitivity analysis by comparing results with 

and without outliers could provide further insights into the model's robustness, ensuring that outliers do not 

disproportionately influence the results and reinforcing the reliability of the conclusions. 

 

10. Summary 

 

Throughout this comprehensive study, the primary aim was to investigate the multifaceted impact of various factors 

such as airport design, runway characteristics, services, classifications, and 5010 data, on the operational volume at Part 

139 certificated airports. Leveraging a hierarchical multivariate regression model, the research meticulously evaluated 

the significance of each variable, resulting in a refined understanding that not all hypothesized factors maintained their 

presumed influence. Notably, while some variables were expected to be pivotal based on industry experience, the 

statistical analysis excluded certain variables due to insufficient significance, refining the predictive model to focus only 

on the most impactful factors. This paper's findings underscore the importance of empirical evidence in shaping our 

understanding of airport operations, highlighting how data-driven insights can lead to more informed decision-making 

and policy formulation in the aviation industry. This project advances academic knowledge and aligns with practical 

realities, offering a robust framework for future research and operational strategy development in airport management. 
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